d^2+42=52

Simple and best practice solution for d^2+42=52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for d^2+42=52 equation:



d^2+42=52
We move all terms to the left:
d^2+42-(52)=0
We add all the numbers together, and all the variables
d^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $

See similar equations:

| 2x(x+10)=5x+18 | | x(3x-5)/2=(x+5)/4 | | x/7x-4=3x+16 | | 9x+6=x-81 | | (3-5x)/7-x/4=1/2+(5-4x)/8 | | h(3)=1250(9.865)^3 | | 2(4c+1)+7(c+)=-32 | | 9x-9=6x-69 | | 2r+4/6=2r-8/2= | | 24-7x=-46 | | 3y-12=(3(y+1) | | 27x-5x=132=x | | 3n+27=48 | | 5+7n=61 | | 7n+155=169 | | 190-n=212 | | -10x+23=-17 | | 410^2+x^2=x^2 | | 10+u/6=-5.36 | | 3/2=-3/4v-3/7 | | -9=-49+x/3 | | 3=4w+19 | | 161=-u+235 | | 161=u+235 | | -13=8-3v | | 81=6v=3v | | 8y=-3y+5 | | 195=(5200)(.025)(x) | | 2x+3/4=4x-3/4 | | x*2.08-x=30 | | x*1.59-x=104 | | x*1.41=x+30 |

Equations solver categories